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ABSTRACT

Due to lack of high spatial and temporal resolution boundary layer (BL) observations, the rapid changes in

the near-storm environment are not well represented in current convective-scale numerical models. Better

representation of the near-storm environment in model initial conditions will likely further improve the

forecasts of severe convective weather. This study investigates the impact of assimilating high temporal

resolution BL retrievals from two ground-based remote sensing instruments for short-term forecasts of a

tornadic supercell event on 13 July 2015 during the Plains Elevated Convection At Night field campaign. The

instruments are the Atmospheric Emitted Radiance Interferometer (AERI) that retrieves thermodynamic

profiles and the Doppler lidar (DL) that measures horizontal wind profiles. Six sets of convective-scale

ensemble data assimilation (DA) experiments are performed: two control experiments that assimilate con-

ventional and WSR-88D radar observations using either relaxation-to-prior-spread (RTPS) or the adaptive

inflation (AI) technique and four experiments similar to the control but that assimilate either DL or AERI

or both observations in addition to all other observations that are in the control experiments. Results

indicate a positive impact of AERI and DL observations in forecasting convective initiation (CI) and early

evolution of the supercell storm. The experiment that employs theAI technique to assimilateBLobservations

in DA enhances the humidity in the near-storm environment and low-level convergence, which in turn helps

forecasting CI. The forecast improvement is most pronounced during the first;3 h. Results also indicate that

the AERI observations have a larger impact compared to DL in predicting CI.

1. Introduction

Significant improvements in severe weather fore-

casting have been achieved during the past decade

through assimilation of meso- and convective-scale ob-

servations from in situ and remote sensing instruments

into convection-scale numerical weather prediction

(NWP) models. These include assimilation of surface

observations from instruments like automated surface

observing systems and mesonets (e.g., Fujita et al. 2007;Corresponding author: Junjun Hu, junjun.hu@noaa.gov
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Knopfmeier and Stensrud 2013; Sobash and Stensrud

2015), upper-air observations from radiosondes, drop-

sondes, Aircraft Communications Addressing and

Reporting Systems (ACARS; e.g., Coniglio et al. 2016;

Hitchcock et al. 2016), Weather Surveillance Radar-

1988 Doppler (WSR-88D) Doppler velocity and re-

flectivity (e.g., Snyder and Zhang 2003; Dowell et al.

2004; Gao and Stensrud 2012; Yussouf et al. 2013,

2015; Johnson et al. 2015; Wang and Wang 2017), sat-

ellite measurements (e.g., Jones and Stensrud 2012;

Jones et al. 2018; Polkinghorne and Vukicevic 2011),

and all available observations from these instru-

ment types (e.g., Zhang et al. 2006; Snook et al. 2011;

Romine et al. 2013; Stensrud et al. 2013; Johnson

et al. 2015; Wheatley et al. 2015; Jones et al. 2016).

These observing platforms provide complementary

information of the three-dimensional atmospheric

states and assimilating these observations in NWP

model improves the accuracy of model initial conditions

and subsequent forecasts of convective weather.

However, despite significant progress in convective-

scale modeling, predicting convection initiation (CI)

remains a significant challenge (Kain et al. 2013 and

references therein). CI is triggered by a variety of

forcing mechanisms, such as cold fronts, drylines,

gust fronts, gravity waves, outflow boundaries, topo-

graphically induced boundaries, convective rolls as

well as their intersections (Weckwerth and Parsons

2006 and references therein). The current state-of-

the-art convective-scale models have little skill in

forecasting CI mainly due to deficiencies such as sys-

tematic biases in planetary boundary layer (BL) pa-

rameterization schemes, inadequate grid spacing to

resolve the storm-scale processes that modulate CI,

and the lack of adequate observations at high spatial

and temporal resolution, in particular, through the

depth of the BL (Coniglio et al. 2013; Romine et al.

2013; Sobash and Stensrud 2015).

Several studies have investigated the impact of as-

similating nontraditional observations on forecasting

CI. For example, Xue and Martin (2006) showed that

the assimilation of special upper-air and surface ob-

servations that are not routinely available improved

the accuracy of CI of a convective event. More re-

cently, Sobash and Stensrud (2015) demonstrated the

assimilation of surface mesonet observations in im-

proving the forecast of dryline location and sub-

sequent convective evolution. Degelia et al. (2018)

explored the impact of assimilating radar and rou-

tinely available in situ observations on a summer

nocturnal CI event on 25 June 2013. Those studies

suggest that an accurate representation of the rapidly

evolving storm and near-storm environment in model

initial conditions is crucial for forecasting CI. There-

fore, exploring emerging nontraditional thermody-

namic and kinematic observing platforms sensitive to

the lowest few kilometers of the atmosphere, and as-

similating those BL observations into convective-

scale NWP model is a worthwhile effort.

The National Research Council (NRC) issued two

reports concerning the development of mesoscale

meteorological observational capabilities (NRC 2009)

and the priorities on U.S. weather research and

research-to-operation activities (NRC 2010). Both

reports strongly recommended a network of ground-

based thermodynamic and kinematic profilers to

sample the BL, in particular the lowest 2–3 km of the

atmosphere. One such instrument is the Atmospheric

Emitted Radiance Interferometer (AERI), which

provides thermodynamic profiles (Hoff and Hardesty

2012; Turner and Löhnert 2014) of the BL. The AERI

retrievals are used in various applications, such as

for recording the thermodynamic evolution of BL

(Feltz et al. 1998; Turner et al. 2000), monitoring

preconvective environment evolution (Feltz and

Mecikalski 2002), and differentiating convective in-

dices between tornadic and nontornadic storms

(Wagner et al. 2008). Another instrument that com-

plements AERI is the Doppler lidar (DL), which

measures the horizontal wind speed, direction, and

vertical velocities (Newsom et al. 2017). The DLs

have been used in applications such as atmospheric BL

research (Chai et al. 2004; Newsom and Banta 2004a,b;

Newsom et al. 2005) and significant wind shear detec-

tion (e.g., Shun and Chan 2008). The combination of

AERI and DL instruments provides high-resolution

measurements of BL thermodynamic and kinematic

evolution and structure.

The AERI and DL have been used in various field

campaigns to measure the evolution of BL near-storm

environment. One such field campaign is the Plains

Elevated Convection At Night (PECAN; Geerts et al.

2017) that took place from 1 June to 15 July 2015 over

the U.S. Great Plains. The goal of the PECAN field

campaign was to improve the understanding and simu-

lation of processes that initiate and maintain night time

convection. The field campaign’s unique observational

strategy included the concept of the PECAN Integrated

Sounding Array (PISA), where each PISA site included

thermodynamic and kinematic profilers together with

surface meteorological observations. Six fixed PISA

(FP) sites (Fig. 1c) were deployed and operated con-

tinuously during the PECAN field phase. AERI and

DL were among the several instruments that were

stationed at those PISA sites (all six sites hadAERI but

only four of them FP1, FP2, FP3, and FP6 had DL).
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Observations from numerous severe weather events

were archived by the measuring platforms during the

PECAN field campaign. One such event was a se-

vere thunderstorm event producing an EF3 tornado on

13 July 2015 near Nickerson, Kansas. The Storm Pre-

diction Center highlighted the area as having the po-

tential for isolated severe convection with straight-line

winds being the primary threat. The lack of deep-level

FIG. 1. (a) Severe storm reports for 13 Jul 2015 from the Storm Prediction Center (SPC). (b) Weather Prediction

Center (WPC) surface analysis at 2100 UTC 13 Jul 2015; a pressure trough is located across the entire state of

Kansas. MRMS CREF at (c) 2000 UTC with six FP stations shown in black dots, (d) 2100 UTC with Kansas

mesonet surface observations (temperature in red, dewpoint temperature in green, pressure in purple, wind barbs

in black, and weak dryline in brown), (e) 2130 UTC, (f) 2200 UTC, (g) 2300 UTC, and (h) 0000 UTC 14 Jul 2015

with the damage track of the Nickerson, KS, tornado overlaid in black.
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surface moisture and large-scale convergence repre-

sented a potential limiting factor for severe weather,

which resulted in the decision not to issue a watch.

However, a significant tornado did occur from this en-

vironment indicating that smaller-scale features that

may not have been obvious in existing observations or

model forecasts played an important role. So, this study

examines whether assimilating AERI and DL retrievals

in convective-scale NWP will improve the retrospec-

tive prediction of this supercell event through better

analyses of the near-storm environment. We utilize an

ensemble-based probabilistic approach that is essential

for convective-scale modeling as the uncertainties as-

sociated with severe weather prediction are highly due

to large sensitivity of both environmental conditions and

internal storm processes (Stensrud et al. 2013 and ref-

erences therein). Unlike Coniglio et al. (2019), who

showed the positive impact of assimilating AERI and

DL profiles from a single station on the early evolution

of thunderstorms using several severe weather days,

this study focuses on a single case study and explore

the impact of assimilating a network of AERI and DL

profiles and the choice of the inflation techniques in

convective-scale data assimilation (DA) configuration

on short-term predictions of CI and early evolution of a

tornadic supercell thunderstorm. The hypothesis of this

study is that the assimilation of temperature, moisture,

and horizontal wind variables from these ground-based

sensors should improve the characterization of BL

conditions in the model and hence improve the short-

term forecasts of severe thunderstorm.

An overview of the tornadic event is presented

in section 2. In section 3, we describe the AERI and

DL instruments and preprocessing of the retrievals.

Section 4 discusses the experimental design and the

DA system configuration, and section 5 discusses the

results obtained from experiments. Finally, section 6

provides a summary followed by final discussions.

2. Overview of the 13 July 2015 Nickerson tornadic
supercell event

The Nickerson, Kansas, tornadic supercell event

was the only tornado on 13 July 2015 (Fig. 1a) over the

central contiguous United States (CONUS). In the

afternoon, the surface temperature was higher than

358C and the dewpoint depression was larger than

108C (Fig. 1d), which resulted in high cloud bases with

lifting condensation levels higher than 1.5 km above

the surface. However, a few widely separated thun-

derstorms developed across central Kansas during the

late afternoon (Figs. 1e–h and 2). The Nickerson

tornadic supercell storm initiated at the intersection

of a pressure trough and a weak dryline (Figs. 1b,d)

across central Kansas between 2100 and 2130 UTC

(Figs. 1e and 2b). The storm was initiated on the

moist side of the dryline and then moved slowly south-

southwest across part of Rice and Reno counties

and produced a large EF3 tornado near Nickerson,

Kansas. The tornado touched down at around

2335 UTC and moved southwest during the next

20min (Fig. 1h). The AERI and DL instruments

stationed at the FP sites operated 24 h a day and

provided near continuous thermodynamic and ki-

nematic BL profile measurements of the environ-

ment, making this a good case study to evaluate the

impact of AERI and DL in forecasting the supercell

event.

3. Description of the ground-based remote sensing
boundary layer instruments

a. Atmospheric Emitted Radiance Interferometer

The AERI is a ground-based passive remote sens-

ing instrument that employs a Fourier transform

spectrometer to measure the downwelling infrared ra-

diance emitted from the atmosphere. It was designed

for the U.S. Department of Energy Atmospheric Ra-

diation Measurement (ARM) Program by the Uni-

versity of Wisconsin Space Science and Engineering

Center in the 1990s (Stokes and Schwartz 1994; Turner

et al. 2016). Since then, the deployment of AERI has

been extended worldwide. The spectrometer operates

in a broad spectral range (3.3–19.2mm) with sufficient

spectral resolution (about 1 cm21) to discriminate be-

tween suspended matter (e.g., aerosols, water droplets,

and ice crystals) and gaseous emitters (e.g., carbon di-

oxide and water vapor). From AERI-observed radi-

ance data, vertical profiles of tropospheric temperature

and water vapor mixing ratio can be retrieved using the

AERIoe algorithm (Turner and Löhnert 2014; Turner
and Blumberg 2019). AERIoe is an iterative retrieval

method that starts with a first guess of the tempera-

ture and humidity profiles and uses the ‘‘line-by-line

radiative transfer’’ forward model to compute simu-

lated AERI radiance observations from these profiles.

(The retrieved solution from AERIoe is relatively in-

sensitive to the actual first guess used, and for our ap-

plication here we used the climatological mean profile

as the first guess.) AERIoe propagates the uncer-

tainty in the observations and the sensitivity of the

forward model to provide a full error covariance matrix

of the retrieved profiles (further details about AERIoe

in Turner and Löhnert 2014). The 1 2 s uncertainty,

which is the square root of the diagonal of the error

covariance matrix, provides a simple way to look at the
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uncertainty of the retrieval as a function of height.

During the PECAN field campaign, the AERIs deployed

at each FP station retrieved thermodynamic profiles ev-

ery 5min from the ground through the top of the BL or

cloud-base height (CBH), which ever was lower. On

average, the vertical resolution was approximately the

same as the altitude of the observation (e.g., the re-

trieval has 1-km vertical resolution at 1 km AGL;

Turner and Löhnert 2014). However, Turner and Löhnert
(2014) also shows that the information content (and

hence vertical resolution) changes with water vapor in

the planetary BL.

FIG. 2. Visible satellite images fromGOES-13 at (a) 2045, (b) 2115, (c) 2145, (d) 2215, (e) 2245,

and (f) 2315 UTC 13 Jul 2015. The white circle in (b) denotes the area of CI.
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b. Doppler lidar

The DL is an active remote sensing instrument. It

transmits short pulses of infrared laser light into the at-

mosphere and a small fraction of that light energy is scat-

tered back by atmospheric aerosols, which are ideal tracers

of atmospheric wind fields. The radial air velocity is ana-

lyzed using the Doppler frequency shift imparted on the

backscatter signal (Pearson et al. 2009). TheDLperforms a

plan position indicator (PPI) scan at different azimuthal

angles and horizontal wind speed and direction are derived

from the radial velocity using the velocity azimuth display

(VAD) technique (Klein et al. 2015). Valid measurements

from the DL are usually limited to BL where aerosol

concentrations are high. The kinematic profiles are re-

trieved approximately every 5min, and the vertical reso-

lution of the horizontal wind profile is about 30m.

c. Observation preprocessing

Simple quality control (QC) is performed before as-

similating the AERI and DL measurements into the

model. For DL, the observed PPI radial velocities are fit

using a sine wave (in the standard VAD approach) and

root mean squared error (RMSE) values between ob-

served PPI radial velocities and fitted values are calcu-

lated. Any levels with RMSE greater than 0.5m s21 are

disregarded. Several criteria are taken into consider-

ation to QC the AERI retrievals. First, the observations

above CBH are ignored where the liquid water path

is over 6.0 gm22 (Blumberg et al. 2015). Second, if the

12 s uncertainty of temperature is greater than 1.08C or

the 1 2 s uncertainty of water vapor mixing ratio is

greater than 1.5 g kg21at the lowest level, then the whole

column is disregarded. Finally, only retrievals that con-

verged and have an RMSE between the observed and

predicted (from the forward model) radiance less than

the predefined threshold (unitless; 30.0 for FP1, 5.0 for

FP6, and 10.0 for other stations) are used. The FP6 site

located at Hesston, Kansas, was within the storm inflow

region of the tornadic supercell throughout its life cycle

(Fig. 1h). The time–height plot from site FP6 indicates a

strong nocturnal inversion mixed out after sunrise that

enabled deep mixing (Fig. 3a). The weak dryline and

the convergence along the pressure trough (Figs. 1b,d)

provided enough lift for parcels to reach the level of

free convection (LFC), and the storm initiated at the

intersection of the trough and dryline. The discontinuity

of the data (white pixels in Fig. 3) during later time of the

day are the missing or noisy values that are removed

during QC. On 13 July 2015, there was an increase in the

water vapor in the planetary BL, therefore the vertical

resolution is higher than the average value discussed in

Turner and Löhnert (2014).

The high-resolution AERI and DL retrievals in the

vertical are thinned to help reduce both the correlated

and uncorrelated error in observation (Berger and

Forsythe 2004; Ochotta et al. 2005). For AERI, mea-

surements at vertical levels 50, 100, 150, 200, 300, 400,

500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400,

1500, 1750, and 2000m AGL are selected. Likewise,

for DL, measurements at vertical levels 100, 200, 300,

400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400,

1500, 1750, and 2000m AGL are utilized.

4. Experiment design

a. The multiscale WRF ensemble and DA system

The configuration of the multiscale ensemble DA

and prediction system is very similar to that used in

FIG. 3. Time–height diagram of (a) temperature, (b) dewpoint

temperature retrievals from AERI, and (c) horizontal wind

speed and (d) horizontal wind direction retrieved from DL on

12–13 Jul 2015 at station FP6. White areas represent missing or

noisy data after quality control.
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Yussouf et al. (2015, 2016). The Advanced Research

version of theWeather Research and Forecasting (WRF-

ARW, version 3.8.1; Skamarock et al. 2008) Model is

used for this study with a parent mesoscale domain (with

grid spacing of 15km) over the contiguous United States

(Fig. 4a) and a convective-scale domain (with grid spacing

of 3km) nested within the mesoscale domain that covers

Kansas and parts of the surrounding states (Fig. 4b).

There are 51 vertical grid levels ranging from the sur-

face to 10hPa on the top. A 36-member multiphysics

ensemble is initialized at 0000 UTC 13 July 2015 using

the analyses from National Centers for Environmental

Prediction’s (NCEP) Global Ensemble Forecasting Sys-

tem (GEFS; Toth et al. 2004; Wei et al. 2008; Zhou et al.

2016). The ensemble system is created using different

combinations of physics and radiation schemes and is

very similar to that in Table 2 of Yussouf et al. (2015) and

Wheatley et al. (2015). GEFS also provides boundary

conditions for the 15-km domain.

This study uses the Gridpoint Statistical Interpolation

(GSI; Hu et al. 2017b; Kleist et al. 2009)-based ensem-

ble Kalman filter (EnKF; Whitaker and Hamill 2002;

Whitaker et al. 2008; Liu et al. 2017) DA system (GSI-

EnKF). The GSI-EnKF is used as a component within

the NCEP operational hybrid DA for both global pre-

diction (Wang et al. 2013) and convection allowing

hurricane prediction (Lu et al. 2017a,b). GSI-EnKF is

also used as part of the North American Mesoscale

Forecast System (NAM) and Rapid Refresh (RAP)

systems (Hu et al. 2017a; Wu et al. 2017). After GSI was

transitioned into a community-based code (Shao et al.

2016), the research community began to expand the

system for regional mesoscale and convective-scale DA

and predictions (e.g., Pagowski and Grell 2012; Johnson

et al. 2015, Schwartz 2016; Wang and Wang 2017; Wu

et al. 2017; Hu et al. 2017a).

The GSI component of the DA system performs an

outlier check to the observations, interpolates themodel

FIG. 4. (a) The multiscale domain with the 15-km horizontal grid-spacing mesoscale domain covering the

CONUS and the nested 3-km convective-scale domain centered over the entire state of Kansas. (b) The convective-

scale domain enlarged with six FP sites from the PECAN field campaign. (c) The timeline of the hourly multiscale

DAexperiments. Starting from 1900UTC, only themesoscale (15 km) domain is cycled hourly. (d) The timeline for

the 10-min convective-scale DA experiments.
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first-guess fields to observation space and then calcu-

lates the innovation (observation 2 background). If

the ratio of the innovation to the observation error is

greater than a certain threshold, that observation is re-

jected (‘‘convinfo’’ file in Hu et al. 2017b). In addition to

the outlier check in GSI, which is only a function of

observation error, the EnKF performs an outlier

check that additionally incorporates ensemble spread.

Assuming a threshold sprd_tol, if the difference be-

tween an observation O and those from the prior

(forecast background or first guess F) mean (O 2 F)

is greater than sprd_tol3
ffiffiffiffiffiffiffiffiffiffiffiffi

S1R
p

, where S is ensem-

ble prior variance and R is observation error vari-

ance, that observation is rejected (Liu et al. 2017).

Similar to other convective-scale ensemble DA stud-

ies (Wheatley et al. 2015; Yussouf et al. 2015; Liu et al.

2017), a sprd_tol value 3.25 is used in this study. The

fifth-order Gaspari–Cohn (Gaspari and Cohn 1999)

localization function (Table 1) is used to eliminate

spurious covariance due to sampling errors from

limited ensemble size (Houtekamer and Zhang 2016).

To account for the ensemble underdispersion due

to unrepresented systematic errors, the EnKF system

in the GSI framework includes the relaxation to prior

spread (RTPS; Whitaker and Hamill 2012) multiplica-

tive covariance inflation technique. Suppose sb and sa

are the prior and posterior ensemble spread (standard

deviation) at each analysis grid point, RTPS relaxes the

ensemble spread back to the prior via

sa ) (12a)sa 1asb (1)

where a is a fraction parameter. If a 5 1, ensemble is

inflated to make the posterior spread equal to the prior

spread; If a 5 0, it indicates no inflation (Whitaker and

Hamill 2012). Several recent studies use the RTPS in-

flation technique in regional multiscale cycled ensem-

ble DA studies (Johnson et al. 2015, 2018; Schwartz

and Liu 2014; Schwartz 2016; Wang and Wang 2017).

Another variant of the inflation technique that is widely

used in regional multiscale cycled ensemble DA studies

(e.g., Schwartz et al. 2015; Sobash and Stensrud 2015;

Wheatley et al. 2015; Yussouf et al. 2015, 2016; Jones

et al. 2016) is the spatially and temporally varying mul-

tiplicative adaptive inflation (AI; Anderson 2009). In

an effort to maintain the ensemble spread, AI is ap-

plied prior to applying the observation operators. We

implemented theAI technique fromNational Center for

Atmospheric Research’s (NCAR) Data Assimilation

Research Testbed (DART; Anderson and Collins 2007;

https://www.image.ucar.edu/DAReS/DART; Anderson

2009) into the GSI-EnKF DA system. In AI, an in-

flation factor from the normal distribution is assigned

to each element in the model state vector and the in-

flation factor is updated adaptively during each DA

step using a Bayesian algorithm (Anderson 2009). The

values of the inflation factors are estimated using the

same observations that are used to update the state

variables. The Gaussian mean and standard deviation

of the inflation factor are initialized during the first DA

cycle and used to generate the inflated prior ensemble.

The inflated prior ensemble and the ensemble mean

are then ingested into GSI system to compute the inno-

vations. The EnKF updates the inflated prior ensemble

aswell as themean and standard deviation of the inflation

factor based on the innovations. The updated inflation

values are used during the next DA cycle. For computa-

tional reasons, the inflation standard deviation are kept

unchanged during the update (Anderson 2009).

b. Continuous 1-h cycled multiscale ensemble DA

The mesoscale and convective-scale domains are run

concurrently in a one-way nest setup (following Yussouf

et al. 2015) and cycled hourly for a 18-h period starting

from 0100 UTC 13 July to 1800 UTC 13 July (Figs. 4a,c)

and then only the 15-km domain from 1900 UTC 13 July

to 0300 UTC 14 July using GSI-EnKF technique. Rou-

tinely available traditional observations from NCEP’s

PrepBUFR (World Meteorological Organization for-

mat) files are assimilated, which include pressure, tem-

perature, moisture, and wind from rawinsondes, surface

and marine stations, ACARS, AIREP/PIREP aircraft

reports, Next Generation Weather Radar (NEXRAD)

VAD wind reports, and profilers and Oklahoma meso-

net observations. The error table defined for NAM from

the GSI-EnKF system is used for the observation errors

of observations included in PrepBUFR. The obser-

vation errors for temperature, dewpoint temperature,

horizontal winds and surface pressure are 1.0K, 1.0K,

1.0m s21, and 0.75 hPa, respectively, for Oklahoma

mesonet data. The experiment is built on previous

work that demonstrated the ability of a partially cy-

cled EnKF DA to incorporate realistic mesoscale

characteristics that often play an important role in

TABLE 1. The list of instruments, variables assimilated, and the

covariance localization length scale (where hloc and vloc refer to

horizontal and vertical localization, respectively) used in this study.

Observations

hloc

(km)

vloc

[ln(p/pref)] Variables

Conventional 460 0.45 T, Td, u and y wind, Ps

Oklahoma mesonet 60 0.45 T, Td, u and y wind, Ps

Radar 18 0.80 Reflectivity, radial

velocity

AERI 400 0.45 T and Td

DL 400 0.45 u and y wind
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the development of storm (Fujita et al. 2007; Stensrud

et al. 2009; Wheatley et al. 2012; Ha and Snyder 2014;

Schwartz et al. 2015). The hourly updated meso-

scale domain provides the boundary condition for the

convective-scale domain.

c. Frequent 10-min cycled convective-scale
ensemble DA

As mentioned earlier, CI for the Nickerson supercell

occurred between 2100 and 2130 UTC. To examine the

predictability of CI in the ensemble system and sub-

sequent convective development, the convective-scale

domain is cycled every 10min starting from 1810 UTC,

which is ;3.5 h before the storm initiated, for a 6-h pe-

riod out to 0000 UTC (Figs. 4b,d). The 10-min forecast

from the updated 3-km domain at 1800 UTC 13 July in

hourly multiscale DA provides the initial condition

for the 10-min cycled convective-scale DA and the

hourly updated 15-km domain provides boundary

condition to the 10-min cycled convective-scale DA.

In addition to WSR-88D reflectivity, radial velocity,

PrepBUFR files and Oklahoma mesonet observa-

tions, the cycled DA system also assimilates AERI

and DL retrievals from the FP stations. The Multi-

Radar Multi-Sensor (MRMS) reflectivity observa-

tions (Smith et al. 2016) and WSR-88D Doppler

radial velocity are analyzed to a 5-km grid. Values of

reflectivity below 0 dBZ are set to 0 dBZ representing

‘‘no precipitation’’ and any reflectivity values greater

than 0 dBZ and less than 20 dBZ are not assimilated to

reduce the generation of noisy spurious convection in

the model. When reflectivity is less than 10 dBZ, ra-

dial velocity observations are omitted. The observation

errors of reflectivity and radial velocity are assumed

5 dBZ and 2.0m s21, respectively (Yussouf et al. 2016).

Observation errors for AERI and DL retrievals are

approximated by inflating the rawinsonde observations

defined in NAM error table (Liu et al. 2017). The ob-

servation error in DA system approximates both the

instrument error and the representativeness error (Geer

and Bauer 2011). In this study, the representativeness

error for AERI temperature profiles are approximated

by subtracting 0.2K from total observation error profiles

of rawinsonde temperature. The representativeness er-

ror for DL wind profiles are approximated equal to

the total observation error profiles of rawinsonde

wind. The 1 2 s uncertainties in the retrievals of

AERI and DL profiles are added to the representa-

tiveness error profiles to estimate the total observa-

tion error profiles for AERI temperature and DL

wind profiles. The observation error profiles for AERI

dewpoint temperature retrievals are estimated fol-

lowing Lin and Hubbard (2004).

Several sensitivity tests were conducted using differ-

ent localization length scales for AERI and DL, and the

horizontal (vertical) length scales of 400 km (0.45 scale

height) are selected as a reasonable choice for the lo-

calization length scales (Table 1). To counteract en-

semble underdispersion that arises from assimilating

highly dense radar observations, the additive noise tech-

nique (Dowell and Wicker 2009; Sobash and Wicker

2015) also is applied at each DA cycle to temperature,

humidity, and wind variables where observed reflectivity

exceeds 35dBZ and the difference frommodel simulated

reflectivity is greater than 10dBZ.

Six sets of convective-scale DA and forecast experiments

are conducted in this study (Table 2). The control experi-

ments assimilate traditional observations, Oklahoma mes-

onets, reflectivity and radial velocity during the DA cycles.

The CNTL_RTPS experiment uses the RTPS inflation

technique. Several tests were conducted using different

a ranging from values less than 1 to values greater than

1 (Johnson et al. 2015; Wang and Wang 2017; Schwartz

and Liu 2014; Schwartz 2016) and the results were very

similar. For the CNTL_RTPS, we chose inflation fac-

tor, a 5 1.12 (Schwartz and Liu 2014; Schwartz 2016).

CNTL_AI experiment uses the AI inflation tech-

nique to prior ensembles for maintaining the ensemble

spread. The initial inflation value of 1.0, a fixed stan-

dard deviation of 0.6 and a damping factor of 0.9 is used

for the AI (Sobash and Stensrud 2015). Another set

of experiments assimilate AERI and DL retrievals in

TABLE 2. The left column lists the name of the experiments in this study. Themiddle columns show the observation platforms assimilated,

and the right column lists the inflation techniques used in each of the experiments.

Observation

Experiments Conventional Oklahoma mesonet Radar AERI DL Inflation method

CNTL_RTPS Y Y Y N N RTPS

CNTL_AI Y Y Y N N AI

AERI_DL_RTPS Y Y Y Y Y RTPS

AERI_DL_AI Y Y Y Y Y AI

AERI_AI Y Y Y Y N AI

DL_AI Y Y Y N Y AI
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addition to all observations that are assimilated in the

control experiment. The AERI_DL_RTPS experiment

applies the RTPS inflation technique with a 5 1.12 as

in CNTL_RTPS, and the AERI_DL_AI experiment

applies adaptive prior multiplicative inflation tech-

nique with the same settings as in CNTL_AI. Finally,

two additional experiments, namely, the AERI_AI

and DL_AI experiments are conducted to examine

which observing platform has the larger impact on

the ensemble forecasts. The AERI_AI experiment

assimilates AERI retrievals in addition to all obser-

vations that are assimilated in the control experi-

ment and DL_AI assimilates DL retrievals as well as

all observations assimilated in the control experi-

ment. The 0–6-h ensemble forecasts using all 36

members are initialized from each experiment every

30min, starting from 2000 UTC to evaluate the im-

pact of assimilating AERI and/or DL on forecast-

ing the timing and location of storm initiation and

subsequent storm evolution. The differences in the

results from applying the two inflation techniques

will illuminate the impact of inflation choices on the

ensemble forecasts.

5. Results and discussion

a. Convective initiation

Following Sobash and Stensrud (2015), CI is de-

fined both in model forecasts and in radar observed

storms (MRMS reflectivity) as areas where composite

reflectivity (CREF) is greater than 25 dBZ as an in-

dication of convective development. The gridpoint-

based probability of CREF exceeding a threshold of

25 dBZ (denoted as Prob_CREF25 hereafter) is cal-

culated from the ensemble forecasts initialized at

2000 UTC (Fig. 5). The Nickerson supercell initiated

around ;2115–2130 UTC and its early evolution is

shown in Figs. 5a–c. Another incipient storm (denoted

as storm2) also developed northeast of the Nickerson

storm (Figs. 5a–c). The CNTL_RTPS and CNTL_AI

experiments fail to initiate any of the two storms during

the 2100–2200 UTC forecast period (Figs. 5d–i). The

AERI_DL_RTPS experiment (Figs. 5j–l) fails to ini-

tiate the Nickerson storm during the 2100–2200 UTC,

but initiates storm2 at 2200 UTC, although it is dis-

placed to the north (Fig. 5l). In contrast, there is an

early sign of CI for the Nickerson storm (Fig. 5m) in

AERI_DL_AI experiment with 10% probability at

2100 UTC, and the value increases to above 30% dur-

ing the next 30min (Fig. 5n). The probabilities in-

creases to 50% at 2200 UTC (Fig. 5o). The forecast CI

location of the Nickerson storm is slightly southeast from

the observed location. Similar to AERI_DL_RTPS, the

AERI_DL_AI experiment also predicts the initiation

of storm2 with a northward bias, but with a higher

probability (Figs. 5n–o). Clearly, the addition of AERI

and DL observations in AERI_DL_AI experiment

shows potential with forecasting the CI.

As mentioned earlier, the RTPS inflation technique

aims at recovering the variance in the posterior analysis

back to the prior. For a given value of a, the inflation is

proportional to ensemble spread reduction caused by

the assimilation of observations, normalized by the en-

semble spread in the posterior (Whitaker and Hamill

2012; Liu et al. 2017). Therefore, locations with denser

or larger impact observations have larger inflation. Con-

versely, each state elements in the AI technique has a

normally distributed, spatially and temporally varying

inflation factor that are adjusted based on a Bayesian

algorithm (Anderson 2009; Hodyss et al. 2016) when

updating the state. The same observations are used

to update both the state and the inflation factor and

therefore, larger adjustments are made in regions

where dense and/or large impact observations are

available (Anderson 2009). The differences in the en-

semble spread at 2000 UTC right before calling the

GSI component in experiments AERI_DL_RTPS and

AERI_DL_AI are shown in Fig. 6. Compared to the

AERI_DL_RTPS, the AERI_DL_AI experiment main-

tains a larger ensemble spread in near-storm environ-

ment for both temperature T and dewpoint temperature

Td (Figs. 6a,b) at 2000 UTC. AERI_DL_RTPS in-

flates the posterior analyses during the previous DA

cycle at 1950 UTC, generates a 10-min forecast out

to 2000 UTC and then the ensemble spread is calcu-

lated from the prior (or background). AERI_DL_AI

generates a 10-min forecast using the analyses from

1950 UTC, inflates the forecast at 2000 UTC, and the

ensemble spread is calculated after the inflation. With

a larger ensemble spread, higher number of AERI Td

retrievals pass the outlier check and are assimilated

in AERI_DL_AI especially during 1850–2000 UTC

compared to that in AERI_DL_RTPS. Starting from

1930 UTC, all Td retrievals are used to update the

storm environment in AERI_DL_AI. Even though,

both experiments assimilate the same number of T,

u-wind, and y-wind retrievals (not shown), the AERI

Td plays a more significant role in storm initiation.

Because of the more accurate CI forecasts from the AI

inflation technique, the following sections will focus

only on AERI_DL_AI and CNTL_AI experiments.

Not surprisingly, the ensemble mean reflectivity fore-

casts at 4km above mean sea level (MSL; Fig. 7) also

indicates that AERI_DL_AI initiates the Nickerson

storm 60min into forecast at around 2100UTC (Fig. 7g).

The cell starts to intensity with larger areal coverage
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during the next 1-h forecast period (Figs. 7h,i) and by

2200 UTC, AERI_DL_AI forecasts both the Nickerson

and storm2 northeast to the Nickerson storm. Like-

wise, the individual forecasts from ensemble member

1 demonstrate the initiation of the Nickerson storm

around 2130 UTC (Fig. 7n) and its intensification

30min later (Fig. 7o) together with the formation of

storm2 in AERI_DL_AI. Conversely, CNTL_AI fails

to forecast the storm during the forecast period either

in the ensemble mean (Figs. 7d–f) or individual fore-

casts (Figs. 7j–l).

The fractions skill score (FSS) is computed for

CREF greater than 25 dBZ using a neighborhood

approach with two neighborhood radius values, 9 and

18 km, respectively. The calculation is made follow-

ing the method described in Roberts and Lean (2008)

FIG. 5. Observed MRMS CREF at (a) 2100, (b) 2130, and (c) 2200 UTC 13 Jul 2015.

Probability of CREF exceeding 25 dBZ from forecasts initialized at 2000 UTC and valid

at (d),(g),(j),(m) 2100, (e),(h),(k),(n) 2130, and (f),(i),(l),(o) 2200 UTC from experiments

CNTL_RTPS in (d)–(f), CNTL_AI in (g)–(i), AERI_DL_RTPS in (j)–(l), and AERI_DL_AI

in (m)–(o). The black contour in (d)–(o) is the 25-dBZ contour fromMRMS CREF. The black

dot in (n) is the location of the skew T–logp diagram in Fig. 11.
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and Schwartz et al. (2010). Not surprisingly, the

AERI_DL_AI yields higher FSS compared to CNTL_AI

during ;1.5–3 h forecasts (Fig. 8). The higher FSS

indicates higher values of probability and smaller lo-

cation displacement in the AERI_DL_AI. The zero

FSS value during the 0–1.25-h period in both experi-

ments is due to the absence of convection during that

time period over that area. As expected, the larger

neighborhood radius generates higher FSS.

Similar results also are seen from the forecasts ini-

tialized at 2100 UTC, which is after six additional DA

cycles. The AERI_DL_AI experiment predicts CI for

the Nickerson supercell with higher than 30% proba-

bility values with a southeastward displacement in lo-

cation. The CNTL_AI experiment again fails to forecast

CI. Neither AERI_DL_AI nor CNTL_AI forecast the

CI for the Nickerson supercell at the correct time (not

shown) from earlier analyses (before 2000 UTC). Thus,

the assimilation of AERI and DL help initiate the

Nickerson storm as early as 90min in advance.

As mentioned in section 2, the Nickerson storm ini-

tiated around the intersection of a pressure trough

and dryline between 2100 and 2130 UTC as shown in

the surface analysis in Figs. 1b and 1d. Compared to

CNTL_AI, the AERI_DL_AI experiment forecasts

stronger low-level convergence along the pressure

trough (Figs. 9a,b) around the CI location. The differ-

ences are greater than 30 3 1025 s21 (Fig. 9c). The

stronger low-level convergence in AERI_DL_AI ex-

periment helps lifting parcels to reach LFC. The low-

level moisture near the storm especially from the east

and southeast also is enhanced by assimilating AERI

FIG. 6. The differences in the ensemble spread at 850 hPa from the 2000 UTC DA cycle

between AERI_DL_AI and AERI_DL_RTPS experiments for (a) T and (b) Td. The warmer

(cooler) color means AI has larger (smaller) spread than RTPS. The black circle overlaid is the

observed CI of the Nickerson supercell around 2130 UTC. (c) The number of AERI Td observa-

tions assimilated over the domain in (a) from AERI_DL_AI and AERI_DL_RTPS experiments.

The black dashed line is the total number of AERI Td observations available during DA.
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and DL observations in AERI_DL_AI (Figs. 10a,b).

The difference in the moisture between the two exper-

iments is in excess of 38C (Fig. 10c). The additional

moisture in AERI_DL_AI experiment increased the

probability of the CI occurrence in the forecast (Crook

1996; Weckwerth 2000). The skew T–logp diagram

(Fig. 11) near the CI location (as shown by the black dot

in Fig. 5n) from the CNTL_AI and AERI_DL_AI ex-

periments also reveals that the AERI_DL_AI experi-

ment produced higher moisture content at lower levels

FIG. 7. Observed MRMS reflectivity at 4 km MSL from (a) 2100, (b) 2130, and

(c) 2200 UTC 13 Jul 2015. The ensemble mean reflectivity forecasts at 4 km MSL initialized

from 2000 UTC analyses and valid at (d),(g) 2100, (e),(h) 2130, and (f),(i) 2200 UTC from ex-

periments CNTL_AI in (d)–(f) andAERI_DL_AI in (g)–(i). The reflectivity forecasts ofmember

1 at 4 km MSL initialized from 2000 UTC analyses and valid at (j),(m) 2100, (k),(n) 2130, and

(l),(o) 2200UTC from experiments CNTL_AI in (j)–(l) andAERI_DL_AI in (m)–(o). The black

contour in (d)–(o) is the 25-dBZ contour from MRMS reflectivity at 4 km MSL.
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especially between 900 and 700 hPa compared to the

CNTL_AI experiment (Figs. 11a,b). Similar results are

found in near-storm environment (not shown).

Results discussed above indicate that the assimila-

tion of AERI and DL BL observations increase the

moisture in the near-storm environment and low-level

convergence along the pressure trough, which likely

initiate convection in the forecast. The AERI_DL_AI

experiment forecasts CI with 90-min lead time. In con-

trast, the CNTL_AI experiment fails to forecast CI.

b. Ensemble forecast after convective initiation

Another experiment, COMB_AI, is conducted to

examine whether the positive impact of assimilat-

ing AERI and DL continues after the CI occurrence.

The COMB_AI is identical to AERI_DL_AI until

2100 UTC DA cycle (which is approximately 30min

before CI). Starting from 2110 UTC DA cycle,

COMB_AI only assimilates observations that are

identical to the observations assimilated in CNTL_AI

experiment. In short, COMB_AI starts from the

AERI_DL_AI analyses at 2100 UTC but withholds

AERI and DL observations during the remaining DA

cycles. The CNTL_AI analyses fail to initiate convection

at 2130 and 2200 UTC (Figs. 12b,f), but AERI_DL_AI

analyses produces;30%Prob_CREF25 for theNickerson

storm with a southeastward displacement at 2130 UTC

(Fig. 12c) and the analyses Prob_CREF25 values in-

crease to above 90% after three additional assimila-

tion cycles (Fig. 12g). The analyses from AERI_DL_AI

at 2300 UTC and 2330 UTC show Prob_CREF40

values higher than 90% for the Nickerson supercell

at approximately the correct location (Figs. 12k,o).

The CNTL_AI analyses indicates high Prob_CREF40

values at 2330 UTC, but over a much smaller area

(Fig. 12n). Starting from the same background at

2110 UTC, the COMB_AI experiment (Figs. 12d,h,l,p)

produces similar probabilities as AERI_DL_AI does

(Figs. 12c,g,k,o).

FIG. 8. FSS of forecast CREF greater than 25 dBZ using (a) 9-

and (b) 18-km neighborhood radius. The red line indicates

CNTL_AI experiment, and the blue line represents AERI_DL_AI

experiment. Forecast is initialized at 2000 UTC. The domain used

for calculating the FSS is the same as in Fig. 5.

FIG. 9. The 30-min forecast ensemble mean low-level (10m) wind convergence (1025 s21)

valid at 2030 UTC for (a) the CNTL_AI experiment, (b) the AERI_DL_AI experiment, and

(c) the difference between the two experiments (AERI_DL_AI2CNTL_AI). The black circle

overlaid is the observed CI of the Nickerson supercell around 2130 UTC.
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Compared to AERI_DL_AI, a significantly smaller

number of radar reflectivity observations are assimi-

lated in CNTL_AI after ;2130 UTC, both on the

entire convective-scale domain (Fig. 13a) and over

a smaller area covering the Nickerson supercell

(Fig. 13b). The CNTL_AI experiment fails to initiate

CI around ;2130 UTC, rejects most of the radar

reflectivity observations in the EnKF outlier check

(Fig. 13b), in particular during 2130–2200 UTC time

period, and a few reflectivity observations are assimi-

lated during the later DA cycles. On the other

hand, more than 30% of the ensemble members in

AERI_DL_AI and COMB_AI predict CI around

2130 UTC. As a result, a relatively larger number of

reflectivity observations from the incipient Nickerson

cell during ;2145–2200 UTC time period pass the

FIG. 10. The 30-min forecast ensemble mean dewpoint temperature at 1 km AGL valid at

2030 UTC for (a) the CNTL_AI experiment, (b) the AERI_DL_AI experiment, and (c) the

difference between the two experiments (AERI_DL_AI 2 CNTL_AI). The black circle

overlaid is the observed CI of the Nickerson supercell around 2130 UTC.

FIG. 11. Skew T–logp diagram from the 30-min forecast valid at 2030 UTC from

(a) CNTL_AI and (b) AERI_DL_AI experiments at the location shown by the black dot in

Fig. 5n. The thin green lines are the dewpoint temperature from the ensemble members, and

the purple line is the ensemble mean; the thin red lines indicate the temperature from the

ensemble members, and the blue line indicates the ensemble mean.
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outlier check and are assimilated in AERI_DL_AI

and COMB_AI experiments (Fig. 13b). Not sur-

prisingly, the number of radar reflectivity obser-

vations assimilated in COMB_AI is close to that

in AERI_DL_AI (Figs. 13a,b), which explains

the overall similar behavior of COMB_AI and

AERI_DL_AI (Figs. 12d,h,l,p with Figs. 12c,g,k,o)

The similar number of reflectivity observations as-

similated in all three experiments during the early

DA period (1810–2130 UTC; Fig. 13a) are mainly

from the convection over the northern part of do-

main (Figs. 1c–e).

The 30-, 60-, 90- and 120-min forecasts (Figs. 14i–l)

initialized from the 2300 UTC analyses (Fig. 12k)

generate higher Prob_CREF40 values near the

Nickerson storm in the AERI_DL_AI experiment

with a systematic displacement error. In contrast, the

CNTL_AI forecasts low Prob_CREF40 (Fig. 14e)

values 30-min into the forecast and then the proba-

bility values disappear (Fig. 14f). COMB_AI pro-

duces higher Prob_CREF40 (Figs. 14m–p) compared

to that from the CNTL_AI (Figs. 14e–h) indicat-

ing the positive impact of assimilating AERI and

DL during the early assimilation cycle. However, the

FIG. 12. (first column) The observed MRMS CREF and the Prob_CREF25 from the analyses valid at (a)–(d) 2130 and (e)–(h)

2200 UTC, and the Prob_CREF40 from the analyses valid at (i)–(l) 2300 and (m)–(p) 2330 UTC from the (second column) CNTL_AI,

(third column) AERI_DL_AI, and (fourth column) COMB_AI experiments. The black contour in (b)–(d), (f)–(h), (j)–(l), and (n)–(p) is

the 40-dBZ contour from MRMS CREF.
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high Prob_CREF40 values fromAERI_DL_AI (Figs. 14i–l)

compared to that from COMB_AI (Figs. 14m–p)

clearly indicates the benefit of assimilating AERI and

DL in forecasting the evolution of the storm after

initiation.

c. The AERI_AI and DL_AI experiments

As mentioned earlier, the AERI_AI and DL_AI

experiments are designed to examine which of the

two observing platforms has more impact on the en-

semble forecasts. The 90-min forecast initialized from

the 2000 UTC analysis generates;10% Prob_CREF25

near the Nickerson storm for the AERI_AI experi-

ment (Fig. 15e), and the forecast probability increases

to as high as 40% (Fig. 15f) 2 h into the forecast.

Similar to AERI_DL_AI experiment (Figs. 5m–o),

a southeastward displacement is noticed in the CI

location for the Nickerson storm but a northward

displacement for storm2 (Figs. 15e–f). In contrast,

DL_AI (Figs. 15g–i) and CNTL_AI (Figs. 15a–c) fail

to initiate the storm during the forecast period. Com-

pared to CNTL_AI analyses at 2300 UTC, which fail to

generate any Prob_CREF40 values for the Nickerson

storm (Fig. 16a), DL_AI experiment generates high

Prob_CREF40 value but over a very small area

(Fig. 16g). In contrast, the AERI_AI experiment

generates high Prob_CREF40 with larger areal cov-

erage over the observed Nickerson tornadic supercell

storm (Fig. 16d) in the analyses. The forecast storm

from AERI_AI slowly weakens during the next 30-min

forecast period (Figs. 16e–f).

The overall results from Figs. 15 and 16 indicate that

the AERI thermodynamic retrievals have a larger im-

pact on the ensemble analyses and short-term forecast of

the Nickerson supercell storm, compared to the kine-

matic retrievals from DL. The CI forecast initialized at

2000 UTC from AERI_DL_AI (Figs. 5m–o) has higher

Prob_CREF25 values for the Nickerson storm com-

pared to that from either AERI_AI or DL_AI (Fig. 15)

experiment. The evolution of the storm after CI in

AERI_DL_AI (Figs. 14i–l) compared to that from

AERI_AI and DL_AI (Fig. 16) also suggests positive

impact when retrievals from both instruments are as-

similated together.

6. Summary and conclusions

This study examines the impact of assimilating BL

profiles from two ground-based remote sensing in-

struments, namely the AERI and DL, on the ensemble

FIG. 13. The total number of available radar reflectivity observations (only the nonzero

values; dashed black line) and the number of reflectivity assimilated in the CNTL_AI (orange

line), AERI_DL_AI (blue line), and COMB_AI (green line) experiments after passing the

EnKF outlier check over the (a) entire convective-scale domain as in Fig. 4b and (b) over a

smaller domain centered on Nickerson supercell area as in Fig. 5a.
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analyses and forecasts of a tornadic supercell event on

13 July 2015 in Kansas. The observations include temper-

ature and moisture profiles from the AERI and horizontal

wind profiles from the DL. The goal is to evaluate if as-

similating these additional high temporal resolution near-

storm BL profiles helps improve the ensemble forecasts of

CI and subsequent evolution of the tornadic supercell.

Six sets of convective-scale ensemble DA and predic-

tion experiments are conducted using the WRF-ARW

Model and GSI-EnKF DA system. Both the control

and AERI_DL experiments use the same initial

and boundary conditions. The control experiments

(CNTL_AI and CNTL_RTPS) assimilate NWS rou-

tinely available conventional, Oklahoma mesonet

as well as WSR-88D radar reflectivity and radial ve-

locity observations, and the AERI_DL experiments

(AERI_DL_AI and AERI_DL_RTPS) assimilate

AERI and DL profile retrievals in addition to all other

observations assimilated in the control experiment.

The impact of the choice of the inflation method in

FIG. 14. (first row) The observed MRMS CREF and forecast Prob_CREF40 initialized at 2300 UTC and valid

at (e),(i),(m) 2330, (f),(j),(n) 0000, (g),(k),(o) 0030, and (h),(l),(p) 0100 UTC from the (second row) CNTL_AI,

(third row) AERI_DL_AI, and (fourth row) COMB_AI experiments. The black contour in (e)–(p) is the 40-dBZ

contour from MRMS CREF.
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convective-scale ensemble DA and prediction is

evaluated by evaluating two commonly used inflation

technique, the RTPS and AI technique. To examine

which instrument has a larger impact, two addi-

tional experiments are performed, namely AERI_AI

that withholds DL observations and DL_AI that

withholds AERI retrievals from AERI_DL_AI

experiment.

Results suggest that the forecast is sensitive to the choice

of the inflation technique utilized in the convective-scale

cycled DA. The assimilation of AERI and DL retrievals

using the spatially and temporally varying AI technique

forecasts the CI with a 90-min lead time, whereas the same

experiment using the RTPS method fails to initiate CI.

Cycled AI created favorable spread in the ensemble that

facilitated the assimilation of a larger number ofAERI and

DL observations than RTPS. Assimilating the high tem-

poral resolution thermodynamic and kinematic profiler

observations from AERI and DL improve CI forecasts

both in terms of timing and location.

FIG. 15. The Prob_CREF25 from forecasts initialized at 2000 UTC and valid at (a),(d),(g) 2100, (b),(e),(h) 2130,

and (c),(f),(i) 2200 UTC from the (top) CNTL_AI, (middle) AERI_AI, and (bottom) DL_AI experiments. The

thick black contour overlaid is the 25-dBZ MRMS CREF.
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Detailed analysis indicates that the AERI and DL

observations create a more favorable BL environment

for CI. The additional moisture in the near-storm envi-

ronment and stronger low-level convergence along the

pressure trough in AERI_DL_AI experiment contrib-

utes to the initiation of the Nickerson tornadic super-

cell. Results also suggest that the CI prediction in

AERI_DL_AI experiment enables a larger number of

radar reflectivity observations to pass the EnKF outlier

check compared to that from CNTL_AI experiment,

resulting in an improved ensemble initial condition

and forecast. The improvements in the forecast of the

supercell storm is more pronounced during the first 3 h

of the forecast period. Comparison betweenAERI_AI

and DL_AI experiments indicates that the moisture

from the AERI likely has a larger impact on CI and

early evolution of the storm than that from DL winds.

Assimilating both AERI and DL retrievals improves

the storm environment, which results in an improved

forecast, whereas, withholding either DL or AERI

FIG. 16. The Prob_CREF40 from analysis at (left) 2300 UTC, (center) 15-min forecast valid at 2315 UTC,

and (right) 30-min forecast valid at 2330 UTC for the (a)–(c) CNTL_AI, (d)–(f) AERI_AI, and (g)–(i) DL_AI

experiments. The thick black contour overlaid is the 40-dBZ MRMS CREF.
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from the AERI_DL_AI experiment degrades the

forecast.

This study shows the potential of assimilating AERI

and DL observations into NWP to improve short-term

forecasts of CI and the subsequent evolution for a

supercell tornado event. A network of these types of BL

profiling instruments over the CONUS may benefit a

wide range of applications, in particular the short-term

prediction of hazardous convective weather by pro-

viding better NWP initial conditions. This study also

reveals that convective-scale DA system is sensitive to

the choice of the inflation technique utilized in the

configuration. However, the results from this single case

study should be interpreted cautiously. Coniglio et al.

(2019) have shown the positive impact of assimilating

AERI and DL profiles on the early evolution of thun-

derstorms using several severe weather days. However,

they only used observations from one station. More

studies need to be performed over multiple cases to

assess the robustness of the impact of assimilating a

network of BL instruments and the AI technique in

convective-scale ensemble DA and prediction system.
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